Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhanced crosslimb transfer of force-field learning for dynamics that are identical in extrinsic and joint-based coordinates for both limbs.

Identifieur interne : 002457 ( PubMed/Curation ); précédent : 002456; suivant : 002458

Enhanced crosslimb transfer of force-field learning for dynamics that are identical in extrinsic and joint-based coordinates for both limbs.

Auteurs : Timothy J. Carroll [Australie] ; Aymar De Rugy [France] ; Ian S. Howard ; James N. Ingram [Royaume-Uni] ; Daniel M. Wolpert [Royaume-Uni]

Source :

RBID : pubmed:26581867

Descripteurs français

English descriptors

Abstract

Humans are able to adapt their motor commands to make accurate movements in novel sensorimotor environments, such as when wielding tools that alter limb dynamics. However, it is unclear to what extent sensorimotor representations, obtained through experience with one limb, are available to the opposite, untrained limb and in which form they are available. Here, we compared crosslimb transfer of force-field compensation after participants adapted to a velocity-dependent curl field, oriented either in the sagittal or the transverse plane. Due to the mirror symmetry of the limbs, the force field had identical effects for both limbs in joint and extrinsic coordinates in the sagittal plane but conflicting joint-based effects in the transverse plane. The degree of force-field compensation exhibited by the opposite arm in probe trials immediately after initial learning was significantly greater after sagittal (26 ± 5%) than transverse plane adaptation (9 ± 4%; P < 0.001), irrespective of whether participants learned initially with the left or the right arm or via abrupt or gradual exposure to the force field. Thus transfer was impaired when the orientation of imposed dynamics conflicted in intrinsic coordinates for the two limbs. The data reveal that neural representations of novel dynamics are only partially available to the opposite limb, since transfer is incomplete even when force-field perturbation is spatially compatible for the two limbs, according to both intrinsic and extrinsic coordinates.

DOI: 10.1152/jn.00485.2015
PubMed: 26581867

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:26581867

Curation

No country items

Ian S. Howard
<affiliation>
<nlm:affiliation>School of Computing and Mathematics, Plymouth University, Plymouth, United Kingdom; and.</nlm:affiliation>
<wicri:noCountry code="subField">United Kingdom; and</wicri:noCountry>
</affiliation>

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Enhanced crosslimb transfer of force-field learning for dynamics that are identical in extrinsic and joint-based coordinates for both limbs.</title>
<author>
<name sortKey="Carroll, Timothy J" sort="Carroll, Timothy J" uniqKey="Carroll T" first="Timothy J" last="Carroll">Timothy J. Carroll</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia; timothy.carroll@uq.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="De Rugy, Aymar" sort="De Rugy, Aymar" uniqKey="De Rugy A" first="Aymar" last="De Rugy">Aymar De Rugy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia; Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5287, Université de Bordeaux, France;</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia; Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5287, Université de Bordeaux</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Howard, Ian S" sort="Howard, Ian S" uniqKey="Howard I" first="Ian S" last="Howard">Ian S. Howard</name>
<affiliation>
<nlm:affiliation>School of Computing and Mathematics, Plymouth University, Plymouth, United Kingdom; and.</nlm:affiliation>
<wicri:noCountry code="subField">United Kingdom; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ingram, James N" sort="Ingram, James N" uniqKey="Ingram J" first="James N" last="Ingram">James N. Ingram</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Cambridge, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Cambridge</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wolpert, Daniel M" sort="Wolpert, Daniel M" uniqKey="Wolpert D" first="Daniel M" last="Wolpert">Daniel M. Wolpert</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Cambridge, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Cambridge</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:26581867</idno>
<idno type="pmid">26581867</idno>
<idno type="doi">10.1152/jn.00485.2015</idno>
<idno type="wicri:Area/PubMed/Corpus">002525</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002525</idno>
<idno type="wicri:Area/PubMed/Curation">002457</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002457</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Enhanced crosslimb transfer of force-field learning for dynamics that are identical in extrinsic and joint-based coordinates for both limbs.</title>
<author>
<name sortKey="Carroll, Timothy J" sort="Carroll, Timothy J" uniqKey="Carroll T" first="Timothy J" last="Carroll">Timothy J. Carroll</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia; timothy.carroll@uq.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="De Rugy, Aymar" sort="De Rugy, Aymar" uniqKey="De Rugy A" first="Aymar" last="De Rugy">Aymar De Rugy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia; Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5287, Université de Bordeaux, France;</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia; Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5287, Université de Bordeaux</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Howard, Ian S" sort="Howard, Ian S" uniqKey="Howard I" first="Ian S" last="Howard">Ian S. Howard</name>
<affiliation>
<nlm:affiliation>School of Computing and Mathematics, Plymouth University, Plymouth, United Kingdom; and.</nlm:affiliation>
<wicri:noCountry code="subField">United Kingdom; and</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ingram, James N" sort="Ingram, James N" uniqKey="Ingram J" first="James N" last="Ingram">James N. Ingram</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Cambridge, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Cambridge</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Wolpert, Daniel M" sort="Wolpert, Daniel M" uniqKey="Wolpert D" first="Daniel M" last="Wolpert">Daniel M. Wolpert</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Cambridge, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Cambridge</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of neurophysiology</title>
<idno type="eISSN">1522-1598</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Adult</term>
<term>Arm (physiology)</term>
<term>Biomechanical Phenomena</term>
<term>Feedback, Sensory (physiology)</term>
<term>Female</term>
<term>Functional Laterality</term>
<term>Humans</term>
<term>Joints (physiology)</term>
<term>Learning (physiology)</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Motor Activity</term>
<term>Psychomotor Performance</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activité motrice</term>
<term>Adaptation physiologique</term>
<term>Adulte</term>
<term>Adulte d'âge moyen</term>
<term>Apprentissage (physiologie)</term>
<term>Articulations (physiologie)</term>
<term>Bras (physiologie)</term>
<term>Femelle</term>
<term>Humains</term>
<term>Jeune adulte</term>
<term>Latéralité fonctionnelle</term>
<term>Mâle</term>
<term>Performance psychomotrice</term>
<term>Phénomènes biomécaniques</term>
<term>Rétroaction sensorielle (physiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Apprentissage</term>
<term>Articulations</term>
<term>Bras</term>
<term>Rétroaction sensorielle</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Arm</term>
<term>Feedback, Sensory</term>
<term>Joints</term>
<term>Learning</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Adult</term>
<term>Biomechanical Phenomena</term>
<term>Female</term>
<term>Functional Laterality</term>
<term>Humans</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Motor Activity</term>
<term>Psychomotor Performance</term>
<term>Young Adult</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activité motrice</term>
<term>Adaptation physiologique</term>
<term>Adulte</term>
<term>Adulte d'âge moyen</term>
<term>Femelle</term>
<term>Humains</term>
<term>Jeune adulte</term>
<term>Latéralité fonctionnelle</term>
<term>Mâle</term>
<term>Performance psychomotrice</term>
<term>Phénomènes biomécaniques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Humans are able to adapt their motor commands to make accurate movements in novel sensorimotor environments, such as when wielding tools that alter limb dynamics. However, it is unclear to what extent sensorimotor representations, obtained through experience with one limb, are available to the opposite, untrained limb and in which form they are available. Here, we compared crosslimb transfer of force-field compensation after participants adapted to a velocity-dependent curl field, oriented either in the sagittal or the transverse plane. Due to the mirror symmetry of the limbs, the force field had identical effects for both limbs in joint and extrinsic coordinates in the sagittal plane but conflicting joint-based effects in the transverse plane. The degree of force-field compensation exhibited by the opposite arm in probe trials immediately after initial learning was significantly greater after sagittal (26 ± 5%) than transverse plane adaptation (9 ± 4%; P < 0.001), irrespective of whether participants learned initially with the left or the right arm or via abrupt or gradual exposure to the force field. Thus transfer was impaired when the orientation of imposed dynamics conflicted in intrinsic coordinates for the two limbs. The data reveal that neural representations of novel dynamics are only partially available to the opposite limb, since transfer is incomplete even when force-field perturbation is spatially compatible for the two limbs, according to both intrinsic and extrinsic coordinates.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26581867</PMID>
<DateCreated>
<Year>2016</Year>
<Month>01</Month>
<Day>23</Day>
</DateCreated>
<DateCompleted>
<Year>2016</Year>
<Month>10</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>09</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1598</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>115</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2016</Year>
<Month>Jan</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of neurophysiology</Title>
<ISOAbbreviation>J. Neurophysiol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Enhanced crosslimb transfer of force-field learning for dynamics that are identical in extrinsic and joint-based coordinates for both limbs.</ArticleTitle>
<Pagination>
<MedlinePgn>445-56</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/jn.00485.2015</ELocationID>
<Abstract>
<AbstractText>Humans are able to adapt their motor commands to make accurate movements in novel sensorimotor environments, such as when wielding tools that alter limb dynamics. However, it is unclear to what extent sensorimotor representations, obtained through experience with one limb, are available to the opposite, untrained limb and in which form they are available. Here, we compared crosslimb transfer of force-field compensation after participants adapted to a velocity-dependent curl field, oriented either in the sagittal or the transverse plane. Due to the mirror symmetry of the limbs, the force field had identical effects for both limbs in joint and extrinsic coordinates in the sagittal plane but conflicting joint-based effects in the transverse plane. The degree of force-field compensation exhibited by the opposite arm in probe trials immediately after initial learning was significantly greater after sagittal (26 ± 5%) than transverse plane adaptation (9 ± 4%; P < 0.001), irrespective of whether participants learned initially with the left or the right arm or via abrupt or gradual exposure to the force field. Thus transfer was impaired when the orientation of imposed dynamics conflicted in intrinsic coordinates for the two limbs. The data reveal that neural representations of novel dynamics are only partially available to the opposite limb, since transfer is incomplete even when force-field perturbation is spatially compatible for the two limbs, according to both intrinsic and extrinsic coordinates.</AbstractText>
<CopyrightInformation>Copyright © 2016 the American Physiological Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Carroll</LastName>
<ForeName>Timothy J</ForeName>
<Initials>TJ</Initials>
<AffiliationInfo>
<Affiliation>Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia; timothy.carroll@uq.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Rugy</LastName>
<ForeName>Aymar</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia; Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5287, Université de Bordeaux, France;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Howard</LastName>
<ForeName>Ian S</ForeName>
<Initials>IS</Initials>
<AffiliationInfo>
<Affiliation>School of Computing and Mathematics, Plymouth University, Plymouth, United Kingdom; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ingram</LastName>
<ForeName>James N</ForeName>
<Initials>JN</Initials>
<AffiliationInfo>
<Affiliation>Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Cambridge, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wolpert</LastName>
<ForeName>Daniel M</ForeName>
<Initials>DM</Initials>
<AffiliationInfo>
<Affiliation>Computational and Biological Learning Laboratory, Department of Engineering, University of Cambridge, Cambridge, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>097803</GrantID>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>11</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurophysiol</MedlineTA>
<NlmUniqueID>0375404</NlmUniqueID>
<ISSNLinking>0022-3077</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2011 Nov 23;31(47):17058-68</RefSource>
<PMID Version="1">22114275</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2005 Sep 1;567(Pt 2):651-64</RefSource>
<PMID Version="1">15961421</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Sep 15;24(37):8084-9</RefSource>
<PMID Version="1">15371509</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Oct 24;32(43):14951-65</RefSource>
<PMID Version="1">23100418</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2008 Dec;11(12):1454-61</RefSource>
<PMID Version="1">19011624</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2015 Jan;233(1):1-13</RefSource>
<PMID Version="1">25248844</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2003 Nov;90(5):3040-53</RefSource>
<PMID Version="1">12878711</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2006;44(13):2594-606</RefSource>
<PMID Version="1">16300804</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 1991 Dec 13;46(1):1-8</RefSource>
<PMID Version="1">1786110</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2006;44(6):939-49</RefSource>
<PMID Version="1">16198379</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neural Eng. 2014 Oct;11(5):056006</RefSource>
<PMID Version="1">25082652</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 1992;15:167-91</RefSource>
<PMID Version="1">1575441</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2009 Jun;101(6):3158-68</RefSource>
<PMID Version="1">19357340</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2011;191:195-209</RefSource>
<PMID Version="1">21741553</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2006 Jun;4(6):e179</RefSource>
<PMID Version="1">16700627</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2004 Jul;92(1):10-9</RefSource>
<PMID Version="1">15212434</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 1971 Mar;9(1):97-113</RefSource>
<PMID Version="1">5146491</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Appl Physiol (1985). 2008 Jun;104(6):1656-64</RefSource>
<PMID Version="1">18403447</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2013 Aug;110(4):984-98</RefSource>
<PMID Version="1">23719204</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 2009 Jul 30;181(2):199-211</RefSource>
<PMID Version="1">19450621</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2004 Jul;92(1):349-60</RefSource>
<PMID Version="1">15028745</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2007 Sep;182(2):267-73</RefSource>
<PMID Version="1">17703286</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2009 Aug;12(8):1056-61</RefSource>
<PMID Version="1">19597495</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2007 Nov 6;17(21):1896-902</RefSource>
<PMID Version="1">17964167</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2014 Mar;111(6):1165-82</RefSource>
<PMID Version="1">24353296</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cogn Neurosci. 1995 Spring;7(2):182-95</RefSource>
<PMID Version="1">23961823</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2014 Jun 1;111(11):2232-43</RefSource>
<PMID Version="1">24598522</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2003 Jan;89(1):168-76</RefSource>
<PMID Version="1">12522169</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):347-55</RefSource>
<PMID Version="1">17894267</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1994 May;14(5 Pt 2):3208-24</RefSource>
<PMID Version="1">8182467</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2014 Feb;17(2):312-21</RefSource>
<PMID Version="1">24413700</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2010 Jul 14;30(28):9431-44</RefSource>
<PMID Version="1">20631172</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2010 Jan 1;588(Pt 1):201-12</RefSource>
<PMID Version="1">19917563</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="Y">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000328" MajorTopicYN="N">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001132" MajorTopicYN="N">Arm</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001696" MajorTopicYN="N">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056228" MajorTopicYN="N">Feedback, Sensory</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007839" MajorTopicYN="N">Functional Laterality</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007596" MajorTopicYN="N">Joints</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007858" MajorTopicYN="N">Learning</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008875" MajorTopicYN="N">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009043" MajorTopicYN="Y">Motor Activity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011597" MajorTopicYN="N">Psychomotor Performance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055815" MajorTopicYN="N">Young Adult</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4760504</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">coordinate frame</Keyword>
<Keyword MajorTopicYN="N">interlimb transfer</Keyword>
<Keyword MajorTopicYN="N">motor learning</Keyword>
<Keyword MajorTopicYN="N">sensorimotor adaptation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>11</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>11</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26581867</ArticleId>
<ArticleId IdType="pii">jn.00485.2015</ArticleId>
<ArticleId IdType="doi">10.1152/jn.00485.2015</ArticleId>
<ArticleId IdType="pmc">PMC4760504</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002457 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002457 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:26581867
   |texte=   Enhanced crosslimb transfer of force-field learning for dynamics that are identical in extrinsic and joint-based coordinates for both limbs.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:26581867" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024